DYNAMIC STRUCTURE OF MATRICES OVER FINITE
FIELDS

E. Ventura*
March 1997

Abstract

Given an endomorphism of a finite dimensional vector space F_n^q over a finite field, $\varphi : F_n^q \to F_n^q$, we describe the dynamic structure of the function φ (that is, the decomposition in cycles of the permutation φ, in the bijective case) in terms of the elementary divisors of the endomorphism φ.

Key-words: Graph, Finite Field, Endomorphism, Elementary divisors.

1 The dynamical graph of a function

Definition 1 A graph, $Z = (V, E, \iota, \tau)$, consists of two sets, $V = VZ$ called the set of vertices and $E = EZ$ called the set of edges, and two functions $\iota, \tau : E \to V$ called the incident functions. A graph is finite when V and E are both finite. A loop is an edge e with $e\iota = e\tau$. The concepts of graph morphism and graph isomorphism (denoted \simeq) are the natural ones.

A subgraph of $Z = (V, E, \iota, \tau)$ is a graph of the form (V', E', ι', τ') where $V' \subseteq V$, $E' \subseteq E$ and ι' and τ' are restrictions of ι and τ respectively. The disjoint union of two graphs Z_1 and Z_2 is denoted $Z_1 \vee Z_2$. We denote by nZ the disjoint union of n copies of Z. A graph Z is disconnected when it is the disjoint union of two proper subgraphs. Otherwise, it is connected. The maximal connected subgraphs of Z are called connected components of Z.

The out-valence of a vertex $v \in V$ is $|\iota^{-1}(v)|$, the in-valence of v is $|\tau^{-1}(v)|$ and the valence of v is $|\iota^{-1}(v)| + |\tau^{-1}(v)|$. A graph Z is called a finite core graph if it is finite and has no vertices of valence 0 and 1 (in particular, the empty graph is a core graph, but the graph with a single vertex and no edges is not a core graph). The core of Z, denoted $c(Z)$, is the union of all the finite core subgraphs of Z. A graph Z is a forest when $c(Z)$ is empty.

*Esc. Univ. Pol. de Manresa (Universitat Politècnica de Catalunya). e-mail: ventura@ma3.upc.es
And a tree is a connected forest. The concepts of path, trivial path and closed path are the natural ones.

Let $F \subseteq Z$ be a subforest of Z. The quotient Z/F is the graph obtained from Z by deleting the edges in F and identifying all the vertices in the same component of F to a single vertex. The incident functions are the natural ones.

Let $Z_1 = (V_1, E_1, \iota_1, \tau_1)$ and $Z_2 = (V_2, E_2, \iota_2, \tau_2)$ be two graphs. The pull-back of Z_1 and Z_2, denoted $Z_1 \land Z_2$, is the new graph $Z_1 \land Z_2 = (V_1 \times V_2, E_1 \times E_2, \iota_1 \times \iota_2, \tau_1 \times \tau_2)$. This definition is a particular case of that given in [5]. Note that \land is commutative, associative and distributive respect to \lor. Note also that, for every graph Z, $Z \land C_1 \simeq Z$, where C_1 is the unique graph with a single vertex and a single edge.

The first examples of graphs are the cycle graphs and the bouquets. The cycle graph of n vertices, denoted C_n, is the graph $C_n = (V, E, \iota, \tau)$ where $V = \mathbb{Z}/n\mathbb{Z}$, $E = \{e_1, \ldots, e_n\}$, $\iota(e_i) = i$ and $\tau(e_i) = i + 1$, where the indices are modulo n. And the bouquet of n vertices, denoted R_n, is the unique graph with a single vertex and n (possibly infinite) edges.

Let $s \geq 1$, $n_1 \geq 2$ and n_2, \ldots, n_s be positive integers such that $n_2 \leq n_1 - 1$ and $n_i \leq n_1 n_{i-1}$, $i = 3, \ldots, s$. We denote by $T_{n_1; n_2, \ldots, n_s}$ the graph constructed as follows. Let V_0, V_1, \ldots, V_s be disjoint sets with $|V_0| = 1$, $|V_1| = n_1 - 1$ and $|V_i| = n_1 n_i$, for $i = 2, \ldots, s$. The set of vertices of $T_{n_1; n_2, \ldots, n_s}$ is $V = \bigcup_{i=0}^{s} V_i$. Furthermore, $T_{n_1; n_2, \ldots, n_s}$ contains a loop at the unique vertex in V_0, $n_1 - 1$ edges from the $n_1 - 1$ vertices in V_1 to the vertex in V_0 (the vertex in V_0 has in-valence n_1). Choose n_2 of the $n_1 - 1$ vertices in V_1 and for each one put n_1 different edges going from n_1 of the $n_1 n_2$ vertices in V_2 to the chosen vertex (every vertex in V_1 has in-valence either n_1 or 0). And again, for every $i = 3, \ldots, s$, choose n_i of the $n_1 n_{i-1}$ vertices in V_{i-1} and for each one put n_1 different edges going from n_1 of the $n_1 n_i$ vertices in V_i to the chosen vertex (every vertex in V_{i-1} has in-valence either n_1 or 0). It is clear that $T_{n_1; n_2, \ldots, n_s}$ has $1 + (n_1 - 1) + n_1 n_2 + \cdots + n_1 n_s$ vertices, all of them with out-valence 1, and in-valence either n_1 or 0. So, the number of edges is equal to the number of vertices. Furthermore, $T_{n_1; n_2, \ldots, n_s}$ is connected and, in fact, it is a tree with a loop attached the vertex in V_0.

The following lemma is straightforward to verify, and will be used later.

Lemma 2 For every two positive integers n, m, $C_n \land C_m \simeq \gcd(n, m)C_{\text{lcm}(n, m)}$.

Definition 3 Let A be a set and let $\varphi : A \to A$ be a function.

If A is finite and φ belongs to the symmetric group on A (i.e. φ is bijective), then it can be decomposed as a product (i.e. composition) of disjoint cycles. The unordered list of these cycles is canonically associated to φ and, in fact, it determines φ. In the general case, this construction does not make sense. A graph is the natural object that we can associate to φ in order to generalize the cycle decomposition of permutations in the finite bijective case. This graph will also be canonically associated to φ, and will determine φ too.
We define the dynamical graph of \(\varphi \), denoted \(Z_\varphi \), to be \(Z_\varphi = (V, E, \iota, \tau) \) where \(V = A \), \(E = \{ e_a \mid a \in A \} \), \(\iota(e_a) = a \) and \(\tau(e_a) = \varphi(a) \). That is, we draw an edge from every element in \(A \) to its image under \(\varphi \).

Suppose that \(A \) is finite and \(\varphi \) is bijective. Clearly, \(\varphi \) decomposes as a product of \(\alpha_i \) disjoint cycles of length \(k_i \), \(i = 1, \ldots, s \) if and only if \(Z_\varphi \cong \bigvee_{i=1}^s \alpha_i C_{k_i} \). In general, the structure of \(Z_\varphi \) is given by the following proposition (which is a particular case of Proposition 2 in [3] or Theorem I.3.8(iv) in [1]).

Proposition 4 Let \(A \) be a set and let \(\varphi : A \to A \) be a function. Every connected component of \(Z_\varphi \) is either an infinite tree or a cycle graph with trees attached to its vertices.

Proof. Take a maximal subforest of \(Z_\varphi \) (i.e., a subforest \(F \subseteq Z_\varphi \) containing \(VZ_\varphi \)) and consider the quotient \(Z_\varphi / F \). Each connected component of \(Z_\varphi / F \) contains exactly one vertex, that is, it is a bouquet. But, by definition, every vertex of \(Z_\varphi \) has out-valence at most one (in fact, exactly one), and this property is preserved by collapsing subforests. So, each component of \(Z_\varphi / F \) is isomorphic to either \(R_0 \) or \(R_1 \). This means that \(c(Z_\varphi) \) is the disjoint union of cycle graphs and so, \(Z_\varphi \) is the disjoint union of trees and cycle graphs with some trees attached to its vertices. Furthermore, if a tree component of \(Z_\varphi \) was finite then it should contain a vertex with zero out-valence, which is not the case.

2 Polynomials over finite fields

For the rest of the paper, let \(p \) be a prime number, \(q = p^m \) and \(\mathbb{F}_q \) be the field with \(q \) elements.

Definition 5 Let \(p(x) \in \mathbb{F}_q[X] \) be a polynomial with \(p(0) \neq 0 \) and degree \(r \). The ring \(\mathbb{F}_q[X]/p(x)\mathbb{F}_q[X] \) contains \(q^r - 1 \) non-zero elements and so there exist two integers \(0 \leq s_1 < s_2 \leq q^r - 1 \) such that \(x^{s_1} \equiv x^{s_2} \) modulo \(p(x) \), that is, \(p(x) \) divides \(x^{s_2} - x^{s_1} \). The fact \(p(0) \neq 0 \) says that \(p(x) \) divides \(x^{s_2 - s_1} - 1 \). We define the order of \(p(x) \), denoted \(\text{ord}(p(x)) \), to be the minimum positive integer \(e \) such that \(p(x) \) divides \(x^e - 1 \) (in general, \(\text{ord}(p(x)) \leq q^r - 1 \)).

The order of a given polynomial \(p(x) \in \mathbb{F}_q[X] \) is the minimum positive integer \(e \) such that \(x^e \equiv 1 \) modulo \(p(x) \). So, an easy algorithm to compute the order of \(p(x) \) consists on recursively calculating the powers \(x, x^2, x^3, \ldots \) modulo \(p(x) \) until the first time we obtain \(1 \) (note that if \(x^i \) is the first power congruent to a constant polynomial then \(\text{ord}(p(x)) \) is multiple of \(i \)).

The following are well-known facts in finite fields (see, for example, [4]) which we collect here for later reference:

1. In a field of characteristic \(p \), \((a + b)^p = a^p + b^p \).
(ii) $x^r - 1$ has no multiple roots in the corresponding splitting field if and only if p does not divide r.

(iii) $x^r - 1$ divides $x^p - 1$ if and only if r divides p. So, an arbitrary polynomial $p(x) \in \mathbb{F}_q[X]$ with $p(0) \neq 0$ divides $x^p - 1$ if and only if $\text{ord}(p(x))$ divides p.

(iv) Let $p(x) \in \mathbb{F}_q[X]$ be an irreducible polynomial with $p(0) \neq 0$ and degree r. All the roots of $p(x)$ have the same multiplicative order in the corresponding splitting field. And $p(x)$ divides $x^p - 1$ if and only if some root α of $p(x)$ satisfies $\alpha^p = 1$. So, $\text{ord}(p(x))$ coincides with the multiplicative order of the roots of $p(x)$, which is a divisor of $q^r - 1$. In particular, the order of an irreducible polynomial over a field is not multiple of the characteristic of the field.

We introduce the following notation. Given a prime number p and a positive integer n, we define $[n]_p$ to be the shortest positive integer h such that p^h is not less than n (we will write $[n]$ if there are no risk of confusion). That is, $[1] = 0$ and $p^{[n]} - 1 < n \leq p^{[n]}$ for $n \geq 2$.

Lemma 6 Let $p(x) \in \mathbb{F}_q[X]$ be an irreducible polynomial of order e. Then, the order of $p(x)^h$ is $e p^{[h]}$.

Proof. Let $k = \text{ord}(p(x)^h)$. By one hand, we have that $p(x)^h$, and so $p(x)$ divides $x^k - 1$. Thus, by (iii), e divides k. By another hand, $p(x)$ divides $x^e - 1$ and so $p(x)^h$ divides $(x^e - 1)^h$ and $(x^e - 1)^{[h]} = x^{ep^{[h]}} - 1$. Thus, k divides $ep^{[h]}$, that is $k = ep^t$ for some $0 \leq t \leq [h]$. Now, by (ii) and (iv), all the roots of $x^e - 1$ are simple and so, all the roots of $x^k - 1 = (x^e - 1)^{p^t}$ have multiplicity exactly p^t. But all the roots of $p(x)^h$ have multiplicity at least h, so $h \leq p^t$ which implies $t = [h]$ and $k = ep^{[h]}$.

3 The dynamical structure of a matrix over \mathbb{F}_q

Let K be a field and M a $n \times n$ matrix over K. We say that M is in normal form when it has the form

$$
M = \begin{pmatrix}
M_1 & 0 & \cdots & 0 \\
0 & M_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & M_t
\end{pmatrix},
M_t = \begin{pmatrix}
0 & 0 & \cdots & 0 & -a_{i,0} \\
1 & 0 & \cdots & 0 & -a_{i,1} \\
0 & 1 & \cdots & 0 & -a_{i,2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & -a_{i,r_i-1}
\end{pmatrix}
$$

where $x^{r_i} + a_{i,r_i-1}x^{r_i-1} + \cdots + a_{i,1}x + a_{i,0}$ is a power of a monic irreducible polynomial in $K[X]$, say $p_i^{a_i}(x)$, $i = 1, \cdots, t$. In this case, the characteristic and the minimal polynomial of M_i (called the companion matrix for $p_i^{a_i}(x)$, and denoted $M(p_i^{a_i}(x))$ is $p_i^{a_i}(x)$. The
characteristic polynomial of M is $p_M(x) = \prod_{i=1}^{n} p_i(x)$ and the minimal polynomial of M is $\text{lcm}(p_i(x) | i = 1, \ldots, t)$. It is well known (see, for example, chapter 7 of [2]) that for every endomorphism $\varphi : K^n \to K^n$ there exist a basis in which the matrix of φ is in normal form. This normal form is uniquely determined by φ up to reordering, and the unordered list of polynomials $\{p_i(x) | i = 1, \ldots, t\}$ are called the elementary divisors of M. Furthermore, the normal form gives a decomposition $K^n = E_1 \oplus \cdots \oplus E_t$ in φ-invariant subspaces E_i, and the restriction $\varphi|_{E_i} : E_i \to E_i$ has matrix $M(p_i(x))$ in the corresponding basis.

Given $\varphi : K^n \to K^n$, we can extend the K-linear structure of K^n to a $K[X]$-module structure by defining $xv = \varphi(v)$, $v \in K^n$. It is also well known that K^n is cyclic as $K[X]$-module if and only if the characteristic and the minimal polynomials of φ coincide (denote them by $p(x)$). In this case, K^n can be identified with $K[X]/p(x)K[X]$ as $K[X]$-module, and φ becomes multiplication by x, $g(x) \mapsto xg(x)$.

Proposition 7 Let $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ be an endomorphism, let E be a \mathbb{F}_q-vector space and let $\alpha : \mathbb{F}_q^n \to E$ be an automorphism. Then, $Z_\varphi \simeq Z_{\alpha^{-1}\varphi \alpha}$.

Proof. It is easy to check that $v \mapsto \alpha(v)$, $e_v \mapsto e_{\alpha(v)}$ is a graph isomorphism from Z_φ to $Z_{\alpha^{-1}\varphi \alpha}$. So, $Z_\varphi \simeq Z_{\alpha^{-1}\varphi \alpha}$.

Proposition 8 Let $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ be an endomorphism and let E_1 and E_2 be two φ-invariant subspaces such that $\mathbb{F}_q^n = E_1 \oplus E_2$. Consider $\varphi|_{E_1}$ and $\varphi|_{E_2}$ the restrictions of φ to E_1 and E_2 respectively. Then, $Z_\varphi \simeq Z_{\varphi|_{E_1}} \cap Z_{\varphi|_{E_2}}$.

Proof. Let $Z_\varphi = (\mathbb{F}_q^n, E\varphi, \tau_\varphi)$ and $Z_{\varphi|_{E_1}} \cap Z_{\varphi|_{E_2}} = (E_1 \times E_2, E\varphi|_{E_1} \times E\varphi|_{E_2}, \tau_{\varphi|_{E_1}} \times \tau_{\varphi|_{E_2}})$. It is easy to check that $E_1 \times E_2 \to \mathbb{F}_q^n$; $(u, v) \mapsto u + v$ and $E\varphi|_{E_1} \times E\varphi|_{E_2} \to E\varphi$, $(e_u, e_v) \mapsto e_{u+v}$ is a graph isomorphism from $Z_{\varphi|_{E_1}} \cap Z_{\varphi|_{E_2}}$ to Z_φ. So, $Z_\varphi \simeq Z_{\varphi|_{E_1}} \cap Z_{\varphi|_{E_2}}$.

Theorem 9 Let $p(x) \in \mathbb{F}_q[X]$, $p(x) \neq x$, be a monic irreducible polynomial of order e and degree r, and let $\varphi : \mathbb{F}_q^r \to \mathbb{F}_q^r$ be an endomorphism with characteristic and minimal polynomial $p(x)^\alpha$. Then,

$$Z_\varphi \simeq C_1 \cup \alpha_1 C_{ep} \cup (\alpha_2 + \cdots + \alpha_p) C_{ep^2} \cup \cdots \cup (\alpha_p + 1 + \cdots + \alpha_{p-1}) C_{ep^l} \cup \alpha_s C_{ep^l}$$

where $\alpha_i = \frac{q^r - a^{i-1}}{ep^{i-1}}, i = 1, \ldots, s$, and the unique possible repetition is $e = 1$ which only occurs when $p(x) = x - 1$.

Proof. As we discussed above, \mathbb{F}_q^r is isomorphic to $\mathbb{F}_q[X]/p(x)^\alpha \mathbb{F}_q[X]$ as $\mathbb{F}_q[X]$-module, and φ corresponds to multiplication by x. So, by Proposition 7, $Z_\varphi \simeq Z_\phi$ where $\phi : \mathbb{F}_q[X]/p(x)^\alpha \mathbb{F}_q[X] \to \mathbb{F}_q[X]/p(x)^\alpha \mathbb{F}_q[X], g(x) \mapsto xg(x)$. Let us analyze this second graph.
Let $\varphi : F_q^n \rightarrow F_q^n$ be an endomorphism and denote by $p_1(x)^{\ast_1}, \ldots, p_t(x)^{\ast_t}$ its elementary divisors. Then, $Z_{\varphi} \simeq \bigwedge_{i=1}^t Z(p_i(x)^{\ast_i})$.

Proof. We have a decomposition into φ-invariant direct summands, $F_q^n = E_1 \oplus \cdots \oplus E_t$, such that the restriction $\varphi_{E_i} : E_i \rightarrow E_i$ has characteristic and minimal polynomial $p_i(x)^{\ast_i}$, $i = 1, \ldots, t$. So, by Theorem 9, $Z_{\varphi_{E_i}} \simeq Z(p_i(x)^{\ast_i})$. Now, the proof is completed by using Proposition 8 and induction on t.

Theorem 11 Let $\varphi : F_q^n \rightarrow F_q^n$ be an endomorphism and denote by $p_1(x)^{\ast_1}, \ldots, p_t(x)^{\ast_t}$ its elementary divisors.
(i) If φ is bijective then $p_i(x) \neq x$ for every $i = 1, \ldots, t$ and Z_φ is a disjoint union of some cycle graphs whose lengths are precisely the numbers $\text{lcm}(e_1 p^{j_1}, \ldots, e_t p^{j_t})$ where $e_i = \text{ord}(p_i(x))$ and $j_i = -\infty, 0, 1, \ldots, [s_i]$, $i = 1, \ldots, t$ (with the convention that $e_i p^{-\infty} = 1$).

(ii) If φ is nilpotent then $p_i(x) = x$ for every $i = 1, \ldots, t$ and

$$Z_\varphi \simeq \bigwedge_{i=1}^t Z(p_i(x)^{s_i}),$$

where s_i is the dimension of $\ker \varphi^i$, $i = 1, \ldots, t$ and $s = \max\{s_i\}$.

(iii) Otherwise, there are elementary divisors of the two types. Take those of the first (resp. second) type and consider the graph described in (i) (resp. (ii)) with respect to them, say C (resp. T); let v denote the initial and terminal vertex of the unique loop in T, and let T' denote T with this loop removed. Then, Z_φ is isomorphic to C with a copy of T' attached to every vertex, through v.

Proof. Suppose φ is bijective. By Theorem 10, $Z_\varphi \simeq \bigwedge_{i=1}^t Z(p_i(x)^{s_i})$, and Theorem 9 gives us a description of $Z(p_i(x)^{s_i})$, say

$$Z(p_i(x)^{s_i}) \simeq C_{e_i p^{-\infty}} \lor \beta_i, 0 C_{e_i p^0} \lor \beta_i, 1 C_{e_i p^1} \lor \cdots \lor \beta_i, [s_i] C_{e_i p^{s_i}}$$

where $e_i = \text{ord}(p_i(x))$. Now, using Lemma 2 and induction on t, we obtain that Z_φ is a disjoint union of cycle graphs of lengths precisely $\text{lcm}(e_1 p^{j_1}, \ldots, e_t p^{j_t})$ where j_i runs in the set $\{-\infty, 0, 1, \ldots, [s_i]\}$, $i = 1, \ldots, t$.

Suppose that φ is nilpotent; the nilpotency index is $s = \max\{s_1, \ldots, s_t\}$. The dimension of $\ker \varphi$ is d_1, so every vertex in Z_φ has in-valence either 0 or q^{d_1}. If there exist a non-trivial closed path in Z_φ which does not cross the zero vector then some power of φ fixes a non-zero vector, i.e. it has an eigenvector of eigenvalue 1 which is impossible. So, the unique non-trivial closed paths in Z_φ are repetitions of the loop at 0. Thus, deleting this loop we get a tree, say T. But 0 is the unique vertex in T with out-valence zero, so, for every other vertex v there exist a unique path in T from v to 0. And the length of this path is k if and only if $v \in \ker \varphi^k$ and $v \notin \ker \varphi^{k-1}$. Take now $V = \{0\}$ and $V_i = \ker \varphi^i - \ker \varphi^{i-1}$, $i = 1, \ldots, s$. It is clear that every edge in Z_φ is either the loop at 0, or has its initial vertex in V_i and its terminal vertex in V_{i-1} for some $i = 1, \ldots, s$. So, Z_φ is isomorphic to the graph defined in Definition 1 with suitable parameters. But $|V_0| = 1$, $|V_1| = |\ker \varphi| - 1 = q^{d_1} - 1$, and $|V_i| = |\ker \varphi^i| - |\ker \varphi^{i-1}| = q^{d_i} - q^{d_{i-1}}$, $i = 2, \ldots, s$. So, the parameters in the construction of Z_φ are $n_1 = q^{d_1}$, $n_2 = \frac{q^{d_2} - q^{d_1}}{q^{d_1}} = q^{d_2 - d_1} - 1$, and $n_i = \frac{q^{d_i} - q^{d_{i-1}}}{q^{d_{i-1}}} = q^{d_{i-1}} - q^{d_{i-1} - d_1}$, $i = 3, \ldots, s$ (it is straightforward to verify that they satisfy the necessary conditions). This completes the proof of (ii).

Suppose that φ is neither bijective nor nilpotent and that C, T and T' are as in the statement. By Theorem 10, we know that $Z_\varphi \simeq C \land T$. Let e denote the loop in T. The
vertices and edges of $C \land T$ with second component equal to v and e respectively, form a copy of C inside $C \land T$, say C'. And it is clear that, for every vertex in C', there is a copy of T' attached to it through v. At this moment we have $|V_C||V_T|$ vertices which are the total number of vertices in $C \land T$; and no one of them is isolated. So, the addition of another edge will violate Proposition 4. Thus, the description above is a complete description of $C \land T$ and (iii) is proven.

4 Example

Consider the field with 3 elements and let $\varphi : \mathbb{F}_3^{16} \to \mathbb{F}_3^{16}$ be an endomorphism with characteristic polynomial $(x^2+1)^4(x^3+2x+2)^2x^2$ and minimal polynomial $(x^2+1)^4(x^3+2x+2)x^2$. The list of its elementary divisors will be $(x^2+1)^4, x^3+2x+2, x^3+2x+2, x^2$.

The polynomial $x^2+1 \in \mathbb{F}_3[X]$ is irreducible and has degree $r = 2$ and order $e = 4$ (in fact, $x^4 - 1 = (x+1)(x+2)(x^2+1)$ and x^2+1 does not divide $x^2 - 1$). Aplying Theorem 9 with $s = 4$, we obtain:

$$\alpha_1 = \frac{3^2 - 3^0}{4 \cdot 3^0} = 2, \quad \alpha_2 = \frac{3^4 - 3^2}{4 \cdot 3^1} = 6, \quad \alpha_3 = \frac{3^6 - 3^4}{4 \cdot 3^1} = 54, \quad \alpha_4 = \frac{3^8 - 3^6}{4 \cdot 3^2} = 162$$

so, $Z((x^2+1)^4) \simeq C_1 \lor 2C_4 \lor 60C_{12} \lor 162C_{36}$ (in fact, $1 + 2 \cdot 4 + 60 \cdot 12 + 162 \cdot 36 = 6561 = 3^8$).

The polynomial $x^3+2x+2 \in \mathbb{F}_3[X]$ is irreducible and has degree $r = 3$ and order $e = 13$ (in fact, e divides $3^3 - 1 = 26$ and $x^{13} - 1 = (x+2)(x^3+2x+2)(x^3+x^2+2)(x^3+2x^2+2x+2)$). Aplying again Theorem 9, now with $s = 1$, we obtain:

$$\alpha_1 = \frac{3^3 - 3^0}{13 \cdot 3^0} = 2$$

so, $Z(x^3+2x+2) \simeq C_1 \lor 2C_{13}$ (in fact, $1 + 2 \cdot 13 = 27 = 3^3$).

Fig. 1

$$\alpha_1 = \frac{3^3 - 3^0}{13 \cdot 3^0} = 2$$

so, $Z(x^3+2x+2) \simeq C_1 \lor 2C_{13}$ (in fact, $1 + 2 \cdot 13 = 27 = 3^3$).
By Theorem 11(ii), we obtain that $Z(x^2)$ is the graph depicted in Fig 1. Now, applying Theorem 10 and Lemma 2 we obtain

$$Z((x^2 + 1)^4) \otimes Z(x^3 + 2x + 2) \otimes Z(x^3 + 2x + 2) \cong$$

$$\cong (C_1 \vee 2C_4 \vee 60C_{12} \vee 162C_{36}) \otimes (C_1 \vee 2C_{13}) \otimes (C_1 \vee 2C_{13}) \cong$$

$$\cong (C_1 \vee 2C_4 \vee 60C_{12} \vee 162C_{36}) \otimes (C_1 \vee 56C_{13}) \cong$$

$$\cong ((C_1 \vee 2C_4 \vee 60C_{12} \vee 162C_{36}) \otimes C_1) \vee ((C_1 \vee 2C_4 \vee 60C_{12} \vee 162C_{36}) \vee 56C_{13}) \cong$$

$$\cong C_1 \vee 2C_4 \vee 60C_{12} \vee 56C_{13} \vee 162C_{36} \vee 112C_{52} \vee 3360C_{156} \vee 9072C_{468}$$

(in fact, $1 + 2 \cdot 4 + 60 \cdot 12 + 56 \cdot 13 + 162 \cdot 36 + 112 \cdot 52 + 3360 \cdot 156 + 9072 \cdot 468 = 4782969 = 3^{14}$).

So, by Theorem 11(iii), $Z(\phi)$ is the previous graph with a tree like in Fig.1 deleting the loop, attached to every vertex (the total number of vertices is $3^{14} \cdot 9 = 3^{16}$).

References

